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The predicted flow performance of Steam Assisted Gravity Drainage (SAGD) well pairs is 
sensitive to the spatial distribution of permeability. Permeability measurements taken from small 
scale core data are often both limited and biased. Mini-models of porosity and permeability are 
constructed and flow simulated in order to establish representative relationships/correlations at 
the grid block scale used in SAGD flow simulation. The mini-models are constructed on a by-
facies basis honoring the spatial variability within each category. The uncorrected mini-model 
flow results lead to a too narrow range of permeability. Geostatistical scaling laws are applied to 
correct the permeability values.  This paper presents a permeability modeling and debiasing 
procedure with application to the McMurray Oilsands SAGD reservoir on the Surmont Lease in 
Northern Alberta, Canada. The mini-model construction, flow simulation of the mini-models, and 
derivation of representative porosity/permeability statistics are all described and documented in 
this context. A comparison of SAGD flow simulation results (recovered bitumen and steam-oil-
ratio) with different permeability modeling procedures is presented to support the relative 
importance of the chosen method. 

Introduction 

The thermal SAGD process, invented by Dr. Roger Butler in 1978 [1,2] for in-situ heavy oil 
recovery, is now well accepted and understood. Steam is injected in an upper injection well to 
lower the viscosity of surrounding oil allowing it to drain along a growing cone-shaped steam 
chamber into a lower production well via gravity. The acceptance of SAGD drives Canada to 
second (after only Saudi Arabia) on a world list of proven reserves with some 175 billion barrels 
[3]. Moreover, roughly 40 major Albertan oilsands projects are underway or planned with an 
expected yield of 1.8 million barrels per day by 2010 [4].   

The most powerful instrument available for forecasting reservoir performance is flow simulation. 
Modern flow simulators such as CMG STARS [5] are capable of modeling, in addition to 
conventional three-phase fluid flow, the transfer of heat from steam to the surrounding reservoir. 
Thermal simulators of this type can be used to quantify SAGD production performance. The 
SAGD production performance parameters considered in this work are cumulative oil production 
(COP), instantaneous oil rate (IOR), cumulative steam-oil-ratio (CSOR), and cumulative water 
injection (CWI). 

Several reservoir parameters and their associated uncertainties impact the inference of SAGD 
production. Of all such geological, engineering, flow simulation, and economic parameters, the 
inherently uncertain spatial distribution of petrophysical properties is perhaps the most important 
[6]. Different distributions of one or all of facies type, porosity, water/oil/gas saturation, and 
permeability certainly have a significant effect on all of COP, IOR, CSOR, and CWI. And out of 
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all these petrophysical properties, permeability is likely the single most important variable. The 
subject of this paper is focused on constructing robust permeability models for SAGD flow 
simulation. 

Permeability Modeling 

The traditional method for modeling permeability is with linear or quadratic by-facies porosity-
permeability correlations using core measurements [7]. These correlations are used to transform 
interpolated log porosity to permeability at the geological model scale. The permeability is then 
downscaled for SAGD flow simulation [8]. Although this methodology is straightforward, there 
are some practical challenges and limitations: 

1. Seldom are there sufficient core permeability measurements to reliably infer the by-facies 
porosity-permeability relationships due to significant time and economic costs of collecting 
core permeability data [9]. Moreover, the available porosity-permeability pairs are often quite 
random and difficult to fit with a simple linear or quadratic function.  

2. Oilsands core porosity and permeability measurements are optimistically biased due to 
expansion of the core after extraction and rising to the surface. This bias can then be 
compounded with preferentially sampling for clean and well behaved intervals [10].  

3. The differences in scale from small core samples where the porosity-permeability 
relationships are established to the larger geological property modeling grid where the 
porosity and permeability are interpolated to the intermediate SAGD flow simulation grid 
where the porosity and permeability are used to calculate production performance are often 
ignored in practice for simplicity. 

There are several available procedures aimed at overcoming the challenges above. Most 
methodologies are straightforward, but fall short of accounting for all three issues. An excellent 
state-of-the-art methodology that addressed all three issues simultaneously is presented and 
applied by Waite et al. [11] for the Hamaca Field within the Orinoco Heavy Oil Belt of 
Venezuela. This work provides an alternative method that is straightforward and robust. 

The proposed permeability modeling methodology accounts for limited and naturally random 
permeability data, core expansion and preferential sampling, as well as the scale differences 
between core, geological grid cell volumes, and flow simulation grid cell volumes. Furthermore, 
the procedure is efficient, can be largely automated, and is robust for various heavy oil 
applications.  The proposed permeability modeling methodology is applied to the Surmont SAGD 
reservoir. The resulting permeability model is downscaled to the flow simulation grid and flow 
simulations for a single well pair model are conducted. The resulting COP, IOR, CSOR, and CWI 
production performance measures are then compared to the results using a traditional 
permeability model from simple by-facies quadratic relationships. 

The methodology can be summarized in two overall major steps. The first step involves debiasing 
and re-scaling the by-facies core horizontal permeability kH versus porosity � relationships using 
mini-models. This step involves seven working phases, addresses all three issues above 
simultaneously, and constitutes the majority of the entire process. The second step is modeling 
permeability on the geological grid using a combined probability field cloud transformation 
technique. This step exploits the representative distributions established in the first step and is 
relatively fast. These two steps are first described in general and then described in all necessary 
detail. 
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Overview of Proposed Methodology  

The two key features of the methodology are (1) the integration of lower porosity or increased 
shaliness into measurements from dilated and preferentially sampled core and (2) the translation 
of porosity-permeability relationships at the core scale to the SAGD flow simulation scale. The 
proposed methodology does not require large core databases. 

A representative 1.0 x 1.0 x 0.5m3 (0.5m3) mini-model roughly the size of a typical flow 
simulation grid cell are utilized as miniature numerical laboratories to infer the debiased by-facies 
kH-� relationships at the flow simulation scale. Figure 1 (left) shows a typical schematic mini-
model. A fine-scale grid network at roughly the core scale is tabulated in Figure 1 (right). There 
are a total of 62,500 cells measuring 0.02m (2cm) on each side for an 8.0cm3 grid cell volume. 
All phases of work in the first step of the methodology are performed within this mini-model 
setup. 

 

 
 

Figure 1 – A schematic mini-model (left) and tabulated grid system (right). 

The spatial distributions of porosity within the mini-models are visually calibrated to core photos 
showing representative McMurray shale heterogeneity within each facies. The by-facies porosity 
minimum and maximum limits are derived from logging measurements from which 
representative kH and kV distributions can be calibrated. These resulting by-facies permeability 
distributions are input into a simple steady-state single phase flow simulator to calculate effective 
horizontal and vertical permeabilities at the subsequent SAGD flow simulation scale. This is 
repeated multiple times within each facies so that a reliable scatter of kH- φ pairs can be 
constructed even with limited core data. The resulting representative kH versus φ distributions are 
adjusted using volume variance theory so that they will accurately reflect the anticipated 
permeability uncertainty. 

It is important to emphasize the core porosity values do not change – the log porosity limits are 
simply used to extend its relationship to permeability to unbiased limits. This ensures that lower 
horizontal and vertical permeabilities are represented fairly. 

Surmont Application 

The kH and kV permeabilities are modeled within the blue outlined area in Figure 2 (left). The grid 
network is also shown (right). There are 20 geostatistical realizations of facies, porosity, and 
water saturation previously constructed and available on the same grid. 

  
Number

 Origin     Size 

    Easting      50    0.01    0.02 

   Northing      50    0.01    0.02 

  Elevation      25    0.01    0.02 
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Figure 2 – An illustration of the domain (blue outline - left) and grid (right) for geological 
modeling. 

There are a total of 157 wells with log facies and porosity measurements available within the 
model area in Figure 2. There are a total of 35 wells with core facies, φ, kH, and kV measurements 
available over the entire Surmont Lease with only fourteen located inside the model area. 
Nonetheless, all 760 collocated measurements from all 35 wells are used in the subsequent 
permeability modeling procedure. Five facies types are considered: (1) sand (SC), (2) breccia 
(BRC), (3) sandy inclined heterolithic strata (SIHS), (4) muddy inclined heterolithic strata 
(MIHS), and (5) shale (SH). Of the 760 total core measurements, 473, 53, 146, 50, and 38 are 
collocated with, in order, SC, BRC, SIHS, MIHS, and SH facies. 

Three sets of permeability related cross plots for all 760 data are shown in Figure 3: kH (core) vs φ 
(core), kV (core) vs kH (core), and φ (log) vs φ (core). The correlations are 0.618, 0.899, and 0.450, 
respectively. Figure 4 shows the kH (core) vs φ (core) scatters by-facies for BRC, SIHS, and 
MIHS. The correlations here are 0.834, 0.654, and 0.507, respectively. The optimistic core bias is 
apparent in all of the bivariate scatters in Figures 3 and 4. The core φ measurements are indeed 
systematically higher than the log φ measurements; and since kH and φ are well correlated, kH and 
kV are also biased too high. These by-facies biased kH and kV univariate distributions are shown in 
Figure 5. 

  
Number

   Origin Size

  Easting     160  500012.5  25 

 
Northing

    320 6223012.5  25 

Elevation     300    170.25  0.5
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Figure 3 – Scatter of kH- φ (core), kV-kH, and φ (log)- φ (core) using all 760 core data  
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Figure 4 – Scatter of kH- φ (core) within the BRC, SIHS, and MIHS facies. 
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Figure 5: The biased by-facies histograms of kH and kV using the 760 collocated core data. 
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All necessary detail of the proposed permeability modeling method is now presented. Recall there 
are two major steps and seven phases to the longer first step. The figures and illustrations are 
shown for the BRC, SIHS, and MIHS facies during the description. 

Step One: kH- φ Correlations  

The bivariate kH vs φ relationships are first established using the mini-model approach. There are 
seven phases to this first step of the permeability modeling methodology.  The first step is to 
simulate Vshale. 

The volume fraction of shale VSHALE is simulated using sequential Gaussian simulation. The 
spatial correlation or variogram is visually calibrated to core photos representative of typical 
McMurray Formation heterogeneity from the Surmont lease. The unconditionally simulated 
Gaussian values are then converted to a lognormal VSHALE distribution with randomly drawn mean 
between 0 and 100% and standard deviation of 20%. Figure 1 illustrates the consistency between 
some typical core photos and the resulting mini-model shale heterogeneity for the BRC, SIHS, 
and MIHS facies.   

Figure 5: Comparison of core photos to the visually calibrated mini-model shale heterogeneity. 

The use of VSHALE could be confusing. We are not directly using any VSHALE data; VSHALE is a 
surrogate variable that provides a mechanism to create models with lower porosity than observed 
in the core data. This permits us to fill in the entire distribution of fair porosity values. An 
obvious area of future work is the quantification of the spatial correlation using the VSHALE data 
directly and comparison to these results.  

Convert VSHALE to φ 

The following relationship is used to convert the VSHALE models to φ: 

 ( )SHALE NET SHALE NON NET1 V Vφ φ φ −= − + ⋅  (1) 

where φ NET and φ NON-NET are the maximum and minimum by-facies log porosity values, 
respectively. These values are listed by-facies in Table 1. Formula (1) ensures the fair full range 
of possible porosity is accounted for. An important assumption is that the extreme log porosity 
values are unbiased and reasonably represent the true extreme porosities.  The missing shale or 
low porosity reservoir material is effectively injected into the by-facies geological mini-models. 
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Table 1: The fair porosity limits taken from the extreme log porosity values. 

Figures 6 and 7 show the simulated VSHALE and representative φ distributions for a typical mini-
model run. Notice the presence now of more realistic lower porosity. The resulting representative 
distributions of φ are used in subsequent phases to create representative kH and kV distributions. 

Figure 6: The VSHALE and corrected φ distributions for a typical mini-model run. 

Figure 7: The spatial distribution of a corrected � distribution for a typical mini-model run. 

Representative kH-φ Relationship 

This phase merges the kH- φ correlation from core measurements with the representative porosity 
distributions calculated in the previous phase to calculate new representative kH- φ bivariate 

Representative Log Porosity Limits 

 SC BRC SIHS MIHS SH 

�NET 0.00 0.06 0.02 0.00 0.00 

����NET 0.40 0.37 0.39 0.35 0.36 
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distributions. A GSLIB [12]-like program named bimodel is used for this merging and calibration 
process. The program quantifies a bivariate distribution at a user-defined discretization in kH and 
φ.  Here, the horizontal φ axis has 45 bins from 0 to 45% and the vertical kH axis has 50 bins from 
0.001 to 15,000mD for a total of 2,250 unbiased 2D bivariate discretization points to identify. 

A number of options are available for establishing the representative kH vs φ distributions. The 
raw kH- φ data can be grouped according to the representative φ distribution axis bins; in this case, 
the conditional cumulative distribution functions (ccdfs) are calculated numerically. Initially, this 
option was implemented; however, the resulting distributions were too erratic due to the low 
number of raw by-facies data and their preferential high porosity and permeability densities. 
Another option is to assume that the raw bivariate kH vs φ scatters are approximately bivariate 
normal and fully parameterized by the kH and φ mean and kH- φ correlation coefficient. Under this 
assumption, the set of 45 representative kH ccdfs can be calculated analytically. This option is 
finally implemented due to its robust results compared to using the raw core data. 

The representative kH vs φ bivariate distributions are shown in Figure 8. The color scale 
represents the ccdf values from 0 (blue) to 1 (red). At each of the previously defined 45 
representative porosity bins, a cross section through this plot reveals the Gaussian ccdf for 
horizontal permeability kH. These representative bivariate kH vs φ distributions are used in the 
next phase to generate representative kH and kV distributions at the mini-model scale. 

Figure 8: The representative bivariate kH vs φ distributions over all scales. 

Representative kH 

This stage simulates from the representative kH vs φ bivariate distributions generated in the 
previous phase according to a correlated probability field and the representative porosity 
distributions constructed in the second phase in order to create unbiased kH mini-models for 
subsequent flow simulation. A GSLIB environment program named cltrans implements the 
combined probability field cloud transformation. The required inputs are correlated probability 
fields, the representative φ distributions calculated in the second phase, and the bivariate kH vs φ 
distributions calculated in the previous phase.  

A correlated probability field is simulated over the mini-model grid cells using sequential 
Gaussian simulation with a 0% nugget and isotropic 30cm range variogram within each facies. At 
each of the 62,500 mini-model cells, a representative porosity value φ (from the second phase) 
and probability value p is then available. The representative kH value is then simulated as the p-
quantile of the appropriate kH ccdf in the previous phase. Some typical representative kH 
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distributions resulting from this process are shown in Figure 9. Notice the lower kH frequencies 
previously unavailable without the mini-model approach. 

Figure 9: The representative univariate kH distributions at the mini-model scale. 

The combined probability field cloud transformation is the essential technique used in the second 
step of the overall permeability modeling methodology. The reason for using this particular 
transformation as well as additional implementation details are provided there. 

Representative kV 

The approach for calculating kV at the mini-model and geological scale is through the 760 kV:kH 
ratio data available from core measurements. The kV:kH ratio is first simulated within the mini-
model grid using a 10% nugget and isotropic 30cm range variogram and the by-facies reference 
distributions of core-derived kV:kH ratios. The maximum allowed kV:kH ratio is 1. At each of the 
62,500 mini-model grid cells, the representative kV value is then simply calculated as the kV:kH 
ratio value multiplied by the corresponding kH value simulated in the previous phase. Some 
typical kV:kH ratio models and representative kH distributions resulting from the multiplication are 
shown in Figure 10. Notice again the lower kV frequencies previously unavailable without the 
mini-model approach. 

Figure 10: The representative univariate kH distributions at the mini-model scale. 
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Representative kH- φ Scatter 

A steady-state single phase flow simulation is implemented to calculate the effective horizontal 
flow rates and the corresponding effective horizontal permeabilities kH through Darcy’s Law. The 
effective porosity φ is also calculated with a simple arithmetic average. Repeating the previous 
phases up until now a total of 250 times within each facies, representative kH vs φ bivariate 
scatters that account for sampling bias and diverse scales can be constructed. Figure 11 shows the 
results. The solid red line represents conditional expectation curves from the third phase – the 
results are consistent. 

Figure 11: The representative bivariate kH vs φ distributions for the flow simulation scale. 

Variance Inflation 

This last phase is needed in order to exploit the representative relationships developed in the 
previous phase. The effective kH values from the steady state flow simulation average out 
geological variability quickly resulting in the narrow kH ccdfs in Figure 11. This presents a 
problem in practice since these too tight correlations will underestimate the true uncertainty in kH. 
There is a need then to inflate the conditional distribution variances in order for the true 
permeability heterogeneity to be captured. A variance inflation factor (VIF) is calculated in this 
capacity using geostatistical scaling laws from the mini-model to model area dispersion 
variances. 

The VIF calculation involves several steps. All of the calculations are performed within each 
facies separately. The results are summarized in Table 2. 
 

Table 2: A summary of all the required prior quantities for the calculation of the VIF by-facies. 

Variance Inflation Factor Calculation 

 � D2
(CORE-MA2005) 

~ D2
(MM-

MA2005) 
�(v,v) D2

(V-MA2005) VIF 

SC 0.06 0.799623 0.095044 0.334 0.533 5.603 
BRC 0.00 0.357999 0.059804 0.429 0.204 3.418 
SIHS 0.00 0.453394 0.152053 0.416 0.265 1.741 
MIHS -0.26 0.711314 0.243210 0.356 0.458 1.884 

SH -0.47 0.433481 0.262206 0.200 0.347 1.323 
V = 25 x 25 x 1m ---------------------------- Easting, Northing, Elevation 
MM = 1 x 1 x 0.5m ------------------------- Easting, Northing, Elevation 
MA2005 = 4000 x 8000 x 320m ---------- Easting, Northing, Elevation 
CORE = 0.10 x 0.10m --------------------- Circumference, Height 
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The first step is to calibrate the horizontal permeability power law averaging constant φ by-facies. 
This is done using the 250 representative kH mini-models from the fourth phase and the 250 
effective kH values from flow simulation in the previous (sixth) phase. The φ constant is iterated 
on until the power averaging process of the kH mini-model converges on the corresponding flow 
simulated effective kH value. The average ωpower over all 250 runs is listed in Table 2. All of the 
subsequent dispersion variance calculations and manipulations are performed in power law space 
using the kH ω data. 

The maximum dispersion variance D2
(CORE,MA2005) is required within each facies. This variance is 

calculated as the average variance taken over eight equally wide 5% porosity conditioning 
windows from 0 to 40%. These are listed in Table 2. The target variability at the geological 
modeling scale D2

(V,MA2005) is then calculated as a portion of this maximum dispersion variance 
according to the following volume variance relationship by-facies: 

 ( )2 2
(V,MA2005) (CORE,MA2005) (V,V)1= −D D γ  (2) 

The gamma-bar value is the last link to the target variability and VIF. This is calculated within 
each facies using the same porosity variograms as those used for the 3D geostatistical porosity 
modeling work. The resulting D2

(V,MA2005) values are listed in Table 2. The VIF is then simply the 
ratio between the target variability D2

(V,MA2005) and the average variability currently captured in 
the mini-models D2

(MM,MA2005): 

 
2
(V,MA2005)

2
(MM,MA2005)

=
D

VIF
D

 (3) 

The D2
(MM,MA2005) dispersion variance is calculated similarly to the maximum dispersion variance 

D2
(CORE,MA2005). The representative bivariate kH vs φ distributions from the previous phase are 

separated according to eight equally wide 5% porosity conditioning windows from 0 to 40%. The 
variance of kH within each window is calculated and averaged to obtain the final D2

(MM,MA2005) 
values listed in Table 2. And of course, the VIF factors are also listed in Table 2. 

The same VIF factor is applied to the kH ccdf corresponding to each of the previously established 
45 porosity bins (see the third phase) within each of the five facies types. This correction is 
applied using an affine correction. The resulting variance corrected kH vs φ bivariate distributions 
are shown in Figure 12. The red bullets represent the variance corrected kH- φ scatter of pairs. The 
original biased distributions in Figure 4 are shown with lightly shaded bullets. And a quadratic 
by-facies porosity-permeability regression relationship is shown with a solid blue line.  

The corrected kH vs φ bivariate distributions (red) in Figure 12 provide the key link for 
subsequent permeability modeling at the geological scale and SAGD flow simulation modeling at 
the mini-model scale. These by-facies bivariate relationships effectively and efficiently account 
for core expansion and preferential core sampling as well as the difference in scale between core 
measurements, geological model grid cells, and flow simulation grid cells. The procedure also 
does not require significant time and resource costs associated with collecting numerous core 
permeability measurements. 
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Figure 12: The by-facies representative variance corrected kH vs φ  calibrations (red). The biased 
core data (shaded) and a quadratic permeability curve (blue) are also shown for reference. 

Step Two: Permeability Transform  

The last step of the permeability modeling methodology is a combined probability field cloud 
transformation. This last step is performed at the geological modeling scale using the mini-model 
flow simulation scale calibrations in Figure 12. This step is relatively straightforward. In fact, the 
procedure is similar to that used in the fourth phase of the first step. The kH variable is simulated 
from the representative kH vs φ bivariate distributions in Figure 12 according to a correlated 
probability field and the previously constructed porosity distributions at the geological modeling 
scale. In other words, the kH realizations are spatially drawn from the kH ccdfs embedded within 
the representative kH vs φ bivariate distributions in Figure 12 corresponding to previously 
modeled collocated porosity values.  

Using the representative kH vs φ bivariate by-facies distributions in Figure 12 for the cloud 
transformation ensures the resulting permeability models fairly represent lower permeabilities and 
increased shaliness that would have otherwise been ignored using core measurements alone. 
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These relationships also are applicable at the flow simulation scale, and reproduce the correct 
permeability dispersion variance. Furthermore, a large database of core permeability 
measurements was not required.  

The ccdf realizations are drawn according to a spatially correlated probability field in order to 
accurately represent the spatial variability of permeability as quantified by the variogram. 
Randomly drawing from the ccdfs does not guarantee realistic permeability heterogeneity. 
Correlated probability fields are simulated using sequential Gaussian simulation. The by-facies 
calculated (points) and modeled (line) horizontal and vertical kH variograms are shown in Figure 
13. A vertical-to-horizontal anisotropy ratio was used to model the horizontal SIHS and MIHS 
variograms due to the sparse core data. 

At each of the 15,360,000 25 x 25 x 0.5m geological grid cells, representative porosity values φ 
from the previously available 3D modeling and probability values p from the probability field are 
available. The kH value is taken as the p-quantile from the ccdf that corresponds to the φ value at 
each grid cell location. This is repeated for 20 realizations. 

The kV variable is modeled in a similar way to the fifth phase of the first overall step, that is, by 
previously simulating the kV:kH ratio and multiplying by kH. A variography study of the kV:kH 
ratio indicates an almost pure isotropic nugget effect model. The kV value is obtained from 
multiplying kV:kH by kH. This is repeated for all 20 realizations. 

Figures 13 and 14 show several cross sections through the first porosity and kH, realization. The 
same cross section locations are used in each figure. The horizontal and vertical permeability is 
set to 0.001mD within shale facies. Notice the significant control that the porosity model in 
Figure 13 and by-facies kH vs φ bivariate correlations in Figure 12 has on permeability in Figure 
14. Also notice the increased spatial variability in permeability relative to porosity. This 
variability could have been too large had a random cloud transform with no probability field been 
applied. On the contrary, the permeability variability may have been too low had the VIF not been 
applied. 

The figure showing vertical permeability was removed to save space. 
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Figure 13: Cross sections through the first porosity realization. 
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Figure 14: Cross sections through the first horizontal permeability realization. 
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SAGD Flow Sensitivity  

A small sensitivity study is setup to illustrate the importance of adopting a particular permeability 
methodology. CMG STARS is used for the flow simulations. A simple input deck is considered. 
A network of 20 x 2 x 2m sized Cartesian flow simulation blocks are used within a 1000 x 200 x 
100m southwest subset of the model area in Figure 2 for a total of 40 x 100 x 50 (200,000) blocks 
in the X, Y, Z directions, respectively. There is a single injector-producer well pair 500m in length 
located approximately 6m from the bottom of the reservoir. The project duration is 114 months 
(9.5 years) with 6 months initial hot finger circulation. The component, rock-fluid properties, and 
initial conditions are standard for the McMurray Formation. 

Some preliminary steps are performed within the drainage volume before implementing SAGD 
flow simulation. The first step is extracting the closest facies, φ, SW, kH, kV, and kV:kH variables 
from the geological grid to each of the 200,000 flow simulation grid cells. The extracted geology 
is then used to downscale to a fine scale 1.0 x 1.0 x 0.5m grid network. A re-simulation procedure 
(sequential indicator simulation for facies and sequential Gaussian simulation for �, SW, kH, kV, 
and kV:kH) conditioned by the extracted geology and variography is used for the downscaling. It is 
the geology at this fine scale that is used for flow simulation. 

Four different flow simulation runs are illustrated in this work: (1) using the kH and kV models 
generated by the proposed permeability mini-model approach as input, (2) using the simple 
quadratic by-facies relationships in Figure 12 (blue) as input (3) using constant homogeneous kH 
and kV within each facies, and (4) using, in addition to constant kH and kV distributions, constant φ 
and SW. All the geological variables for extraction and downscaling are derived from the first 
geostatistical realization. Other sensitivity runs were performed dealing with different 
downscaling and upscaling methodologies; however, it is the sensitivity of the flow simulation 
results to only the permeability modeling methodology that is attempting to be captured in this 
work.  

The steam chamber (100oC iso-surface) for the recommended mini-model permeability modeling 
methodology is shown during the hot finger circulation startup (June 2005), the high pressure 
phase (June 2007), the low pressure phase (June 2010) and the blowdown phase (June 2013) in 
Figure 15.  The porosity model is superimposed. Notice the rising roughly cone-shaped steam 
chamber growth with time and increasing porosity. Figure 16 shows the output COP, IOR, 
CSOR, and CWI results using the recommended approach (solid black lines), the quadratic 
approach (broken red lines), the homogenous kH and kV approach (broken yellow lines) and 
homogenous kH, kV, φ, and SW (broken blue lines). The different permeability modeling 
approaches certainly produce different flow results.  

It is difficult in this setting to determine the best permeability methodology. In practice, some 
flow history would be required. The best permeability modeling methodology for that particular 
setting would then be the one producing the best history match. Here, our observations must be 
limited to the conclusion that the permeability modeling methodology is a significant decision 
made for any project. 
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Figure 15: The steam chamber during the startup (top left), high pressure (top right), low 
pressure (bottom left), and blowdown (bottom right) phases of operation. The porosity model is 
transparently superimposed. 

 
Figure 16: The COP, IOR, CSOR, and CWI SAGD production performance profiles for the 
permeability methodology sensitivity studies. 
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Conclusions 

 There are three main challenges associated with permeability modeling: (1) limited core 
permeability measurements random porosity-permeability scatters, (2) core expansion and 
preferential core sampling bias, and (3) vastly different scales between core plug samples, 
geological grid cells, and flow simulation grid cells. 

 The proposed mini-modeling approach overcomes these challenges within a relatively 
straightforward mini-model and flow simulation framework. 

 The difference between more traditional and the proposed permeability modeling 
methodology in terms of SAGD flow simulation results is significant. 

Acknowledgements 

The authors would like to thank the sponsors for the CCG (Center for Computational 
Geostatistics) as well as NSERC for their support.  

References 

[1] Butler, R. SAGD Comes of AGE!, Journal of Canadian Petroleum Technology, 37(7):9-12, 
1998. 

[2] Butler, R. Thermal Recovery of Oil and Bitumen, GravDrain Inc., Calgary, Alberta, 2004. 

[3] Alberta Energy and Utilities Board. Alberta’s Reserves 2004 and Supply/Demand Outlook 
2005-2014, September 2005.  

[4] Moritis, G. Oil Sands Drive Canada’s Production Growth, Oil and Gas Journal, June 7, 
2004. 

[5] Computer Modeling Group Ltd., #150 3553-31 Street NW, Calgary, Alberta, T2L 2K7. 
STARS Software. www.cmgl.ca. 

[6] Deutsch, C., Dembicki, E. and Yeung, K. Geostatistical Determination of Production 
Uncertainty: Application to Firebag Project, Center for Computational Geostatistics 
(CCG), University of Alberta, Canada, 2002. 

[7] Deutsch, C. Geostatistical Reservoir Modeling. Oxford University Press, 2002. 

[8] McLennan, J. A. Scaling and Gridding Geology for SAGD Flow Simulation. Center for 
Computational Geostatistics (CCG), University of Alberta, Canada, 2005. 

[9] Donnelly, J. and Hitchner, J. Determining Oilsand Reservoir Properties from Logs and 
Core – The Controversy Continues. SPE (CIM/CHOA) Paper 79034. 

[10] Zwicky, R. and Eade, J. The Tar Sand Core Analysis Versus Log Analysis Controversy – 
Does it Really Matter. The Oilsands of Canada-Venezuela, CIM Special Volume 17, 1977. 

[11] Waite, M., Johansen, S., Betancourt, D., and Acharya, U. Modeling of Scale-Dependent 
Permeability Using Single Well Micro-Models: Application to Hamaca Field, Venezuela. 
SPE Paper 86976. 


